skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, James D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hazard assessments in monogenetic volcanic fields require estimates of the runout of pyroclastic surges that result from phreatomagmatic explosive activity. Previous assessments used runout distances of 1–4 km, with large cases up to 6 km. Surge deposits at Ubehebe Crater (∼2100 y.b.p., Death Valley, California) have been traced ∼9 km from the crater center, and likely originally extended 1–3 km farther. There is no evidence that the Ubehebe Crater activity was unusually energetic; rather, its distal deposits are better preserved than those at most maar volcanoes because of its young age and the arid environment. Numerical simulations illustrate how low temperatures facilitate long runout of phreatomagmatic surges due to reduced expansion of entrained air compared to hot surges, allowing cool surges to retain higher densities than ambient air. We suggest that hazard assessments for volcanic fields with phreatomagmatic, maar‐forming eruptions should consider runout distances in the range of 10–15 km. 
    more » « less
  2. Abstract Preserved rocks in the Jurassic Ferrar Large Igneous Province consist mainly of intrusions, and extrusive rocks, the topic of this chapter, comprise the remaining small component. They crop out in a limited number of areas in the Transantarctic Mountains and southeastern Australia. They consist of thick sequences of lavas and sporadic occurrences of volcaniclastic rocks. The latter occur mainly beneath the lavas and represent the initial eruptive activity, but also are present within the lava sequence. The majority are basaltic phreatomagmatic deposits and in at least two locations form immense phreatocauldrons filled with structureless tuff breccias and lapilli tuffs with thicknesses of as much as 400 m. Stratified sequences of tuff breccias, lapilli tuffs and tuffs are up to 200 m thick. Thin tuff beds are sparsely distributed in the lava sequences. Lava successions are mainly 400–500 m thick, and comprise individual lavas ranging from 1 to 230 m thick, although most are in the range of 10–100 m. Well-defined colonnade and entablature are seldom displayed. Lava sequences were confined topographically and locally ponded. Water played a prominent role in eruptive activity, as exhibited by phreatomagmatism, hyaloclastites, pillow lava and quenching of lavas. Vents for lavas have yet to be identified. 
    more » « less